Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

BSA-Seq Discovery and Functional Analysis of Candidate Hessian Fly (Mayetiola destructor) Avirulence Genes.

Identifieur interne : 000209 ( Main/Exploration ); précédent : 000208; suivant : 000210

BSA-Seq Discovery and Functional Analysis of Candidate Hessian Fly (Mayetiola destructor) Avirulence Genes.

Auteurs : Lucio Navarro-Escalante [Colombie] ; Chaoyang Zhao [États-Unis] ; Richard Shukle [États-Unis] ; Jeffrey Stuart [États-Unis]

Source :

RBID : pubmed:32670342

Abstract

The Hessian fly (HF, Mayetiola destructor) is a plant-galling parasite of wheat (Triticum spp.). Seven percent of its genome is composed of highly diversified signal-peptide-encoding genes that are transcribed in HF larval salivary glands. These observations suggest that they encode effector proteins that are injected into wheat cells to suppress basal wheat immunity and redirect wheat development towards gall formation. Genetic mapping has determined that mutations in four of these genes are associated with HF larval survival (virulence) on plants carrying four different resistance (R) genes. Here, this line of investigation was pursued further using bulked-segregant analysis combined with whole genome resequencing (BSA-seq). Virulence to wheat R genes H6, Hdic, and H5 was examined. Mutations associated with H6 virulence had been mapped previously. Therefore, we used H6 to test the capacity of BSA-seq to map virulence using a field-derived HF population. This was the first time a non-structured HF population had been used to map HF virulence. Hdic virulence had not been mapped previously. Using a structured laboratory population, BSA-seq associated Hdic virulence with mutations in two candidate effector-encoding genes. Using a laboratory population, H5 virulence was previously positioned in a region spanning the centromere of HF autosome 2. BSA-seq resolved H5 virulence to a 1.3 Mb fragment on the same chromosome but failed to identify candidate mutations. Map-based candidate effectors were then delivered to Nicotiana plant cells via the type III secretion system of Burkholderia glumae bacteria. These experiments demonstrated that the genes associated with virulence to wheat R genes H6 and H13 are capable of suppressing plant immunity. Results are consistent with the hypothesis that effector proteins underlie the ability of HFs to survive on wheat.

DOI: 10.3389/fpls.2020.00956
PubMed: 32670342
PubMed Central: PMC7330099


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">BSA-Seq Discovery and Functional Analysis of Candidate Hessian Fly (
<i>Mayetiola destructor</i>
)
<i>Avirulence</i>
Genes.</title>
<author>
<name sortKey="Navarro Escalante, Lucio" sort="Navarro Escalante, Lucio" uniqKey="Navarro Escalante L" first="Lucio" last="Navarro-Escalante">Lucio Navarro-Escalante</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, National Coffee Research Center, Manizales, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Entomology, National Coffee Research Center, Manizales</wicri:regionArea>
<wicri:noRegion>Manizales</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Chaoyang" sort="Zhao, Chaoyang" uniqKey="Zhao C" first="Chaoyang" last="Zhao">Chaoyang Zhao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shukle, Richard" sort="Shukle, Richard" uniqKey="Shukle R" first="Richard" last="Shukle">Richard Shukle</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-ARS and Department of Entomology, Purdue University, West Lafayette, IN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS and Department of Entomology, Purdue University, West Lafayette, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stuart, Jeffrey" sort="Stuart, Jeffrey" uniqKey="Stuart J" first="Jeffrey" last="Stuart">Jeffrey Stuart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, Purdue University, West Lafayette, IN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Purdue University, West Lafayette, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32670342</idno>
<idno type="pmid">32670342</idno>
<idno type="doi">10.3389/fpls.2020.00956</idno>
<idno type="pmc">PMC7330099</idno>
<idno type="wicri:Area/Main/Corpus">000189</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000189</idno>
<idno type="wicri:Area/Main/Curation">000189</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000189</idno>
<idno type="wicri:Area/Main/Exploration">000189</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">BSA-Seq Discovery and Functional Analysis of Candidate Hessian Fly (
<i>Mayetiola destructor</i>
)
<i>Avirulence</i>
Genes.</title>
<author>
<name sortKey="Navarro Escalante, Lucio" sort="Navarro Escalante, Lucio" uniqKey="Navarro Escalante L" first="Lucio" last="Navarro-Escalante">Lucio Navarro-Escalante</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, National Coffee Research Center, Manizales, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Department of Entomology, National Coffee Research Center, Manizales</wicri:regionArea>
<wicri:noRegion>Manizales</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Chaoyang" sort="Zhao, Chaoyang" uniqKey="Zhao C" first="Chaoyang" last="Zhao">Chaoyang Zhao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shukle, Richard" sort="Shukle, Richard" uniqKey="Shukle R" first="Richard" last="Shukle">Richard Shukle</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-ARS and Department of Entomology, Purdue University, West Lafayette, IN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS and Department of Entomology, Purdue University, West Lafayette, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stuart, Jeffrey" sort="Stuart, Jeffrey" uniqKey="Stuart J" first="Jeffrey" last="Stuart">Jeffrey Stuart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Entomology, Purdue University, West Lafayette, IN, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Purdue University, West Lafayette, IN</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Hessian fly (HF,
<i>Mayetiola destructor</i>
) is a plant-galling parasite of wheat (
<i>Triticum</i>
spp.). Seven percent of its genome is composed of highly diversified signal-peptide-encoding genes that are transcribed in HF larval salivary glands. These observations suggest that they encode effector proteins that are injected into wheat cells to suppress basal wheat immunity and redirect wheat development towards gall formation. Genetic mapping has determined that mutations in four of these genes are associated with HF larval survival (virulence) on plants carrying four different resistance (
<i>R</i>
) genes. Here, this line of investigation was pursued further using bulked-segregant analysis combined with whole genome resequencing (BSA-seq). Virulence to wheat
<i>R</i>
genes
<i>H6</i>
,
<i>Hdic,</i>
and
<i>H5</i>
was examined. Mutations associated with
<i>H6</i>
virulence had been mapped previously. Therefore, we used
<i>H6</i>
to test the capacity of BSA-seq to map virulence using a field-derived HF population. This was the first time a non-structured HF population had been used to map HF virulence.
<i>Hdic</i>
virulence had not been mapped previously. Using a structured laboratory population, BSA-seq associated
<i>Hdic</i>
virulence with mutations in two candidate effector-encoding genes. Using a laboratory population,
<i>H5</i>
virulence was previously positioned in a region spanning the centromere of HF autosome 2. BSA-seq resolved
<i>H5</i>
virulence to a 1.3 Mb fragment on the same chromosome but failed to identify candidate mutations. Map-based candidate effectors were then delivered to
<i>Nicotiana</i>
plant cells
<i>via</i>
the type III secretion system of
<i>Burkholderia glumae</i>
bacteria. These experiments demonstrated that the genes associated with virulence to wheat
<i>R</i>
genes
<i>H6</i>
and
<i>H13</i>
are capable of suppressing plant immunity. Results are consistent with the hypothesis that effector proteins underlie the ability of HFs to survive on wheat.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32670342</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>BSA-Seq Discovery and Functional Analysis of Candidate Hessian Fly (
<i>Mayetiola destructor</i>
)
<i>Avirulence</i>
Genes.</ArticleTitle>
<Pagination>
<MedlinePgn>956</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.00956</ELocationID>
<Abstract>
<AbstractText>The Hessian fly (HF,
<i>Mayetiola destructor</i>
) is a plant-galling parasite of wheat (
<i>Triticum</i>
spp.). Seven percent of its genome is composed of highly diversified signal-peptide-encoding genes that are transcribed in HF larval salivary glands. These observations suggest that they encode effector proteins that are injected into wheat cells to suppress basal wheat immunity and redirect wheat development towards gall formation. Genetic mapping has determined that mutations in four of these genes are associated with HF larval survival (virulence) on plants carrying four different resistance (
<i>R</i>
) genes. Here, this line of investigation was pursued further using bulked-segregant analysis combined with whole genome resequencing (BSA-seq). Virulence to wheat
<i>R</i>
genes
<i>H6</i>
,
<i>Hdic,</i>
and
<i>H5</i>
was examined. Mutations associated with
<i>H6</i>
virulence had been mapped previously. Therefore, we used
<i>H6</i>
to test the capacity of BSA-seq to map virulence using a field-derived HF population. This was the first time a non-structured HF population had been used to map HF virulence.
<i>Hdic</i>
virulence had not been mapped previously. Using a structured laboratory population, BSA-seq associated
<i>Hdic</i>
virulence with mutations in two candidate effector-encoding genes. Using a laboratory population,
<i>H5</i>
virulence was previously positioned in a region spanning the centromere of HF autosome 2. BSA-seq resolved
<i>H5</i>
virulence to a 1.3 Mb fragment on the same chromosome but failed to identify candidate mutations. Map-based candidate effectors were then delivered to
<i>Nicotiana</i>
plant cells
<i>via</i>
the type III secretion system of
<i>Burkholderia glumae</i>
bacteria. These experiments demonstrated that the genes associated with virulence to wheat
<i>R</i>
genes
<i>H6</i>
and
<i>H13</i>
are capable of suppressing plant immunity. Results are consistent with the hypothesis that effector proteins underlie the ability of HFs to survive on wheat.</AbstractText>
<CopyrightInformation>Copyright © 2020 Navarro-Escalante, Zhao, Shukle and Stuart.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Navarro-Escalante</LastName>
<ForeName>Lucio</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, National Coffee Research Center, Manizales, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Chaoyang</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shukle</LastName>
<ForeName>Richard</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>USDA-ARS and Department of Entomology, Purdue University, West Lafayette, IN, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stuart</LastName>
<ForeName>Jeffrey</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, Purdue University, West Lafayette, IN, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">effector protein</Keyword>
<Keyword MajorTopicYN="N">genome sequencing</Keyword>
<Keyword MajorTopicYN="N">plant gall</Keyword>
<Keyword MajorTopicYN="N">plant immunity</Keyword>
<Keyword MajorTopicYN="N">resistance gene</Keyword>
<Keyword MajorTopicYN="N">wheat</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32670342</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.00956</ArticleId>
<ArticleId IdType="pmc">PMC7330099</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2014 May 20;5:3849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24846013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2008 Jan;8(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18050277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2016 Jan;84:22-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Apr 4;496(7443):91-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2014 Feb;107(1):417-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24665728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Dec 15;27(24):3435-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22025480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Mar;14(2):178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2018 Sep;100:30-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29913225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Mar 23;9:252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29628931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Mar 2;25(5):613-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25660540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2015 Jun;10(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25950237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2007 Dec;33(12):2171-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18058177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Jan 22;30(2):174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22267009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2018 Feb 1;25(1):87-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29036669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(4):715-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 May;22(5):975-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22399573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 1;26(5):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Aug;22(8):1541-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22555591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):4077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 Nov;7(11):e1002255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Oct;49(10):1220-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21782462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Oct 13;16:779</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26462916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 May;110(8):1473-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15803288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 25;9(6):e100958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24964065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Apr;74(1):174-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23289725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Oct;111(6):1167-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16160821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2008 Jan;54(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17854824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1998 Oct;41(5):702-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9809439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Jun;10(6):724-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 May;167(1):343-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15166159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Jun;9(6):e1003534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2018 Feb - Mar;105:54-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29336997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Aug 06;4(8):e6529</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19657394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 May;74(4):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23451734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Nov;7(11):e1002348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Jul 02;10:293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19573234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Jul;111(2):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15942758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Plant Genomics. 2008;2008:412696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Dec 11;19(23):6553-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1684420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2010 Feb;103(1):178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20214384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 07;8(11):e80422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24244686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Oct 23;10(10):e1004655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25340333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Mar;100(3):279-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20128702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Mol Biol. 2004 Feb;13(1):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14728671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2014 Oct;15(10):662-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25139187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2014 Jul 22;281(1787):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24870048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Aug 30;14(8):R93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24000942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Nov;111(7):1308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16136351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 May 8;8(1):7256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29740007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1682921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010 Sep 28;10:296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20920202</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Colombie</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Indiana</li>
</region>
</list>
<tree>
<country name="Colombie">
<noRegion>
<name sortKey="Navarro Escalante, Lucio" sort="Navarro Escalante, Lucio" uniqKey="Navarro Escalante L" first="Lucio" last="Navarro-Escalante">Lucio Navarro-Escalante</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Zhao, Chaoyang" sort="Zhao, Chaoyang" uniqKey="Zhao C" first="Chaoyang" last="Zhao">Chaoyang Zhao</name>
</region>
<name sortKey="Shukle, Richard" sort="Shukle, Richard" uniqKey="Shukle R" first="Richard" last="Shukle">Richard Shukle</name>
<name sortKey="Stuart, Jeffrey" sort="Stuart, Jeffrey" uniqKey="Stuart J" first="Jeffrey" last="Stuart">Jeffrey Stuart</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000209 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000209 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32670342
   |texte=   BSA-Seq Discovery and Functional Analysis of Candidate Hessian Fly (Mayetiola destructor) Avirulence Genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32670342" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020